

IIII A century of pollution

- River shore used as a landfill site for industrial and domestic waste from 1866 to 1966
- Area filled in for the site development
- + Bonaventure Expressway surrounds the site
- Major contamination problem from groundwater migrating into the river

IIII The shoreline over time

IIII Project overview

GOAL: Protect the St. Lawrence River

- + **Project:** An innovative environmental project to protect the St. Lawrence River from groundwater contaminants
- + **Challenge:** Identify an integrated solution to the environmental problem for the entire site (east and west sectors)

+ Joint effort:

- The Jacques Cartier and Champlain Bridges Incorporated (JCCBI)
- Ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques (MDDELCC)
- Ville de Montréal

IIII Location

IIII West sector

CONTAMINANTS

- Ammonia nitrogen
- + Polycyclic aromatic hydrocarbons (PAHs)
- + Dissolved metals

SOLUTION

Groundwater containment and treatment system

IIII East sector

CONTAMINANTS

 Petroleum hydrocarbons (diesel) contaminated with polychlorinated biphenyls (PCBs)

SOLUTION

+ Retaining wall and hydrocarbon capture system

IIII Site specific issues

- + Vast amount of land under the responsibility of three levels of government
- + Complex environmental problem that is different for each sector
- Coordination and adaptation for the construction of the bypass bridge and the new Île-des-Sœurs bridge for the New Champlain Bridge Corridor project
- + Traffic flow maintained

IIII Problem

Groundwater contaminated with ammonia nitrogen, polycyclic aromatic hydrocarbons (PAHs) and dissolved metals

- 1. Installation of a hydraulic barrier made up of a series of wells along the shore
 - + Number of wells: 33
 - + Well depth: about 15 metres
 - + Wells located at the edge of the river and installed in well bores 300 mm wide
 - + 92 observation wells installed further upstream

2. Pumping of contaminated groundwater

- + Flow rate: 1,5 à 35 m³/jour
- + Total pumping rate: 240 m³/day

3. Treatment of contaminated water

- Pre-treatment (oxidation, flotation and filtration)
- + Biological treatment
- + Ion-exchange resin treatment
- Discharge system (underground outlet)

IIII Implementation

Project conducted jointly with the MDDELCC

Private-public partnership contract awarded to Sanexen Services Environnementaux Inc.

Work schedule

- SUMMER FALL 2016
 Work to create the hydraulic barrier and construct a treatment system will start in summer 2016
- WINTER 2017System run-in
- SPRING 2017
 System start-up, for a period of 15 years

IIII Problem

Petroleum
hydrocarbons (diesel)
contaminated with
PCBs found in the
groundwater table in
variable concentrations

Construction of a containment system to stop the migration of hydrocarbons

1. A retaining wall will be installed along the shore

- + Length of 920 metres between Clément Bridge and Victoria Bridge
- + Depth of about 12 metres
- + Width of about 0.5 to 1.0 metre
- Lower section of the screen placed 2.5 metres below the average groundwater table level
- Exterior wall (surface facing the river) located about 1 metre from the river embankment
- + Layout allows for the containment of petroleum hydrocarbons

1. A retaining wall will be installed along the shore

- + Deep soil mixing method
- Drilling to a depth of about 12 m
- Injection of cement-bentonite grout in the hollow core of the drilling auger
- Once set, the cement-bentonite grout blends with the soil and hardens to create the retaining wall
- Proven method for confined work sites

1. A retaining wall will be installed along the shore

2. Creation of a capture system with 128 pumping wells

- + Vacuum extraction of PAHs with a suction tube built into the recovery well
- + The retaining wall prevents PAHs from migrating to the river; instead, they accumulate upstream from the screen and are recovered
- + Capture system that includes:
 - Pumping wells 150 mm (6 in.) wide and 7 to 12 metres deep
 - Connecting lines laid down in a tight corridor on the shoulder of the Bonaventure Expressway

- 3. Construction of two hydrocarbon recovery stations
 - + Two pumping stations at the east and west ends of the containment area

- 4. Periodic recovery of hydrocarbons via both pumping stations
 - Variable pumping frequency modified based on how deep PAH layers are (detected from periodic testing)
 - + Pumped volume of up to 10,000 L per load (mix of water and diesel)

IIII Implementation

Project closely coordinated with the Ville de Montréal Construction contract has gone to tender

Work schedule

- SUMMER FALL 2016
 Work to build containment system
 Closure of one out of three lanes on the Bonaventure Expressway towards downtown
- WINTER 2017System start-up

